Control unit, 1-10 V 3-gang
Order-No. : 101900

Operating instructions

1 Safety instructions

Electrical equipment may only be installed and fitted by electrically skilled persons.
Failure to observe the instructions may cause damage to the device and result in fire and other hazards.
Danger of electric shock. Device is not suitable for disconnection from supply voltage.
Danger of electric shock. The $1 \ldots 10 \mathrm{~V}$ control voltage is a functional extra-low voltage
(FELV), and can be connected to mains potential. On installing, ensure safe separation to SELV/PELV systems. In order to disconnect the connected luminaires, disconnect both the mains voltage and control voltage circuits.
These instructions are an integral part of the product, and must remain with the end customer.

2 Device components

Figure 1
(1) Connection for control outputs
(2) Connection for switching outputs
(3) Slide switch/Status indication
(4) Programming LED
(5) Programming button
(6) KNX connection

3 Function

System information

This device is a product of the KNX system and complies with the KNX directives. Detailed technical knowledge obtained in KNX training courses is a prerequisite to proper understanding
The function of this device depends upon the software. Detailed information on loadable software and attainable functionality as well as the software itself can be obtained from the manufacturer's product database. Planning, installation and commissioning of the device are
carried out with the aid of KNX-certified software. The latest versions of product database and the technical descriptions are available on our website.

Intended use

- \quad Switching and brightness setting for lamps with operating devices with 1-10-V interface
- Mounting on DIN rail according to EN 60715 in distribution boxes

Product characteristics

- Relay switch contact for switching the connected loads
- Manual operation of the relay independently of the bus
- Various L1, L2 and L3 external conductors can be connected.
- No additional power supply necessary
- Feedback of switching state and brightness value
- Switch position display
- \quad Switch-on and dimming behaviour can be set
- Time dimmer can be set
- Time functions: switch-on delay, switch-off delay, staircase lighting timer with run-on time
- Integration into light scenes

4 Operation

Switching relay contacts manually

The status of the relay is reflected by the slide switches (3) on the front of the device (Figure 1). At the same time they can be used for manual operation of the relay outputs sing a suitable tool.

- Move slide switch to ON position.

Relay contact is closed, load is switched on.

- Move slide switch to OFF position.

Relay contact is open, load is switched off.
i The position of the slide switch immediately reflects the status of the relay, regardless of whether the output is in NO or NC mode of operation.
i Manual switching of the relays is independent of the bus. Thus in case of manual switching there will be no feedback via the bus.
i Outputs disabled via software can still be switched manually.

5 Information for electrically skilled persons

5.1 Fitting and electrical connection

DANGER!

Electrical shock when live parts are touched.
Electrical shocks can be fatal.
Before carrying out work on the device or load, disengage all the corresponding circuit breakers. Cover up live parts in the working environment.

Fitting the device

Observe the temperature range. Ensure adequate cooling.

- Mount device on DIN rail. Output terminals must be at the top.

Connecting the device

Figure 2
(7) Lamp operating device with 1-10 V interface

Control cable: appropriate type, cross-section and routing for the specifications for mains voltage cables. 1-10 V and mains voltages wires can be run together in a cable, e.g. NYM $5 \times 1.5 \mathrm{~mm}^{2}$.

Only use lamp operating devices that are of the same type, the same power level, and from the same manufacturer. Otherwise there may be differences in brightness between the individual lamps.
The maximum number of lamp operating devices that can be connected is a function of the sum of the control voltages that feed these devices.
i Electronic lamp operating devices generate high current spikes when they are switched on, that can result in sticking of the relay contacts. Note switch-on currents. In the case of loads with high switch-on current, use switch-on current limiter or separate load protection.

- Connect the device according to the connection diagram (Figure 2).
- Connect load operating devices with protective earth conductor in accordance with the manufacturer's specifications.
- If multiple miniature circuit breakers supply dangerous voltages to the device or load, couple the miniature circuit breakers or label them with a warning, to ensure release is guaranteed.

Installing the cover

It is necessary to install a cover to protect the bus connection against hazardous voltages in the connection area.

Figure 3: Installing the cover

- Route the bus cable towards the rear.
- Install cover on top of the bus terminal so that it snaps into place (Figure 3).

Removing the cover

Figure 4: Removing the cover

- Press the cover to the side and pull it off (Figure 4).

5.2 Commissioning

Load the address and the application software

- Switch on the bus voltage
- Assign physical addresses and load application software into the device.
- Note the physical address on the device label.

6 Appendix

6.1 Technical data

KNX
KNX medium TP 1
Commissioning mode S-mode
Rated voltage KNX
Power consumption KNX
Connection mode KNX
DC 21 ... 32 V SELV
max. 240 mW
Ambient temperature
Storage/transport temperature Connection terminal

Control outputs
Control voltage
Control current per output
Cable length
Switching outputs
Contact type
Switching voltage
μ contact
Switching current 230 V AC 1
16 A
Switching current 230 V AC $3>10 \mathrm{~A}$
Switching current 400 V AC $1 \quad 10 \mathrm{~A}$
Switching current 400 V AC $3 \quad 6 \mathrm{~A}$
Fluorescent lamps 10 AX
Switching voltage DC
DC $12 \ldots 24 \mathrm{~V}$
16 A
Switching current DC
100 mA
Minimum switching current 400 A
Switch-on current $600 \mu \mathrm{~s}$ 200 A
Ohmic load
Capacitive load 3680 W

Lamp loads
Incandescent lamps 2500 W
HV halogen lamps 2500 W
LV halogen lamps with inductive transformer 1200 VA
LV halogen lamps with Tronic transformer 1500 W
Fluorescent lamps T5/T8
uncompensated 2500 W
parallel compensated $1300 \mathrm{~W} / 140 \mu \mathrm{~F}$
Duo circuit
Compact fluorescent lamps
uncompensated 2500 W
parallel compensated
$1300 \mathrm{~W} / 140 \mu \mathrm{~F}$
Mercury vapour lamps
uncompensated
2000 W
2000 W / $140 \mu \mathrm{~F}$
Connection
Single stranded $\quad 0.5 \ldots 4 \mathrm{~mm}^{2}$
finely stranded without conductor sleeve
finely stranded with conductor sleeve
Fitting width
$0.34 \ldots 4 \mathrm{~mm}^{2}$
0.14 ... $2.5 \mathrm{~mm}^{2}$
$72 \mathrm{~mm} / 4$ modules

6.2 Warranty

The warranty is provided in accordance with statutory requirements via the specialist trade. Please submit or send faulty devices postage paid together with an error description to your responsible salesperson (specialist trade/installation company/electrical specialist trade). They will forward the devices to the Gira Service Center.

Control unit, 1-10 V 3-gang
Gira
Giersiepen GmbH \& Co. KG
Elektro-Installations-
Systeme
Industriegebiet Mermbach
Dahlienstraße
42477 Radevormwald
Postfach 1220
42461 Radevormwald
Deutschland
Tel +49(0)21 95-602-0
Fax +49(0)21 95-602-399
www.gira.de
info@gira.de

